
1

CS 188: Artificial Intelligence

Markov Decision Processes (MDPs)

Pieter Abbeel – UC Berkeley

Some slides adapted from Dan Klein

1

Outline

§  Markov Decision Processes (MDPs)
§  Formalism
§  Value iteration

§  In essence a graph search version of expectimax,
but
§  there are rewards in every step (rather than a utility just in

the terminal node)
§  ran bottom-up (rather than recursively)
§  can handle infinite duration games

§  Policy Evaluation and Policy Iteration

2

2

Non-Deterministic Search

3

How do you plan when your actions might fail?

Grid World
§  The agent lives in a grid
§  Walls block the agent’s path
§  The agent’s actions do not always

go as planned:
§  80% of the time, the action North

takes the agent North
(if there is no wall there)

§  10% of the time, North takes the
agent West; 10% East

§  If there is a wall in the direction the
agent would have been taken, the
agent stays put

§  Small “living” reward each step (can
be negative)

§  Big rewards come at the end
§  Goal: maximize sum of rewards

3

Grid Futures

5

Deterministic Grid World Stochastic Grid World

X

X

 E N S W

X

E N S W

?

X

X X

Markov Decision Processes
§  An MDP is defined by:

§  A set of states s ∈ S
§  A set of actions a ∈ A
§  A transition function T(s,a,s’)

§  Prob that a from s leads to s’
§  i.e., P(s’ | s,a)
§  Also called the model

§  A reward function R(s, a, s’)
§  Sometimes just R(s) or R(s’)

§  A start state (or distribution)
§  Maybe a terminal state

§  MDPs are a family of non-
deterministic search problems
§  One way to solve them is with

expectimax search – but we’ll
have a new tool soon

6

4

What is Markov about MDPs?
§  Andrey Markov (1856-1922)

§  “Markov” generally means that given
the present state, the future and the
past are independent

§  For Markov decision processes,
“Markov” means:

Solving MDPs
§  In deterministic single-agent search problems, want an

optimal plan, or sequence of actions, from start to a goal
§  In an MDP, we want an optimal policy π*: S → A

§  A policy π gives an action for each state
§  An optimal policy maximizes expected utility if followed
§  Defines a reflex agent

Optimal policy when R
(s, a, s’) = -0.03 for all
non-terminals s

5

Example Optimal Policies

R(s) = -2.0 R(s) = -0.4

R(s) = -0.03 R(s) = -0.01

9

Example: High-Low
§  Three card types: 2, 3, 4
§  Infinite deck, twice as many 2’s
§  Start with 3 showing
§  After each card, you say “high”

or “low”
§  New card is flipped
§  If you’re right, you win the

points shown on the new card
§  Ties are no-ops
§  If you’re wrong, game ends

§  Differences from expectimax:
§  #1: get rewards as you go ---

could modify to pass the sum up
§  #2: you might play forever! ---

would need to prune those, we’ll
see a better way

2

3
2 4

10

You can patch expectimax
to deal with #1 exactly, but
not #2…

6

High-Low as an MDP
§  States: 2, 3, 4, done
§  Actions: High, Low
§  Model: T(s, a, s’):

§  P(s’=4 | 4, Low) = 1/4
§  P(s’=3 | 4, Low) = 1/4
§  P(s’=2 | 4, Low) = 1/2
§  P(s’=done | 4, Low) = 0
§  P(s’=4 | 4, High) = 1/4
§  P(s’=3 | 4, High) = 0
§  P(s’=2 | 4, High) = 0
§  P(s’=done | 4, High) = 3/4
§  …

§  Rewards: R(s, a, s’):
§  Number shown on s’ if s ≠ s’
§  0 otherwise

§  Start: 3

2

3
2 4

Example: High-Low
3

Low High

2 4 3
High Low High Low High Low

3 , Low , High 3

T = 0.5,
R = 2

T = 0.25,
R = 3

T = 0,
R = 4

T = 0.25,
R = 0

12

7

MDP Search Trees
§  Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

13

Utilities of Sequences
§  What utility does a sequence of rewards have?

§  Formally, we generally assume stationary preferences:

§  Theorem: only two ways to define stationary utilities
§  Additive utility:

§  Discounted utility:

14

8

Infinite Utilities?!
§  Problem: infinite state sequences have infinite rewards

§  Solutions:
§  Finite horizon:

§  Terminate episodes after a fixed T steps (e.g. life)
§  Gives nonstationary policies (π depends on time left)

§  Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “done” for High-Low)

§  Discounting: for 0 < γ < 1

§  Smaller γ means smaller “horizon” – shorter term focus

15

Discounting
§  Typically discount rewards by
γ < 1 each time step
§  Sooner rewards have higher

utility than later rewards
§  Also helps the algorithms

converge

§  Example: discount of 0.5
§  U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
§  U([1,2,3]) < U([3,2,1])

16

9

Recap: Defining MDPs
§  Markov decision processes:

§  States S
§  Start state s0
§  Actions A
§  Transitions P(s’|s,a) (or T(s,a,s’))
§  Rewards R(s,a,s’) (and discount γ)

§  MDP quantities so far:
§  Policy = Choice of action for each state
§  Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s
’

17

Our Status

§  Markov Decision Processes (MDPs)
§  Formalism
§  Value iteration

§  In essence a graph search version of expectimax,
but
§  there are rewards in every step (rather than a utility just in

the terminal node)
§  ran bottom-up (rather than recursively)
§  can handle infinite duration games

§  Policy Evaluation and Policy Iteration

18

10

19

Expectimax for an MDP
Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

R,T

Q

A

S

S

R,T

Q

A

S

R,T

Q

A

S

Expectimax for an MDP

21

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

11

Expectimax for an MDP

22

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

Expectimax for an MDP

23

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

12

Expectimax for an MDP

24

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

Expectimax for an MDP

25

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

13

Expectimax for an MDP

26

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

Expectimax for an MDP

27

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

14

Expectimax for an MDP

28

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2)

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0

R,T

Q

A

S

S

R,T

Q

Value Iteration Performs this
Computation Bottom to Top

29

state A
state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

Q state (B,2) Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=1

i=1

i=2

i=2

i=3

i=3
i=number of time-steps left

i=0 Initialization:

15

Value Iteration for Finite Horizon
H and no Discounting

§  Initialization:
§  For i =1, 2, …, H

§  For all s 2 S

§  For all a 2 A:

§ 

30

§  V*i(s) : the expected sum of rewards accumulated when starting from
state s and acting optimally for a horizon of i time steps.

§  Q*i(s): the expected sum of rewards accumulated when starting from
state s with i time steps left, and when first taking action and acting
optimally from then onwards

§  How to act optimally? Follow optimal policy ¼*i(s) when i steps remain:

Value Iteration for Finite Horizon
H and with Discounting

§  Initialization:
§  For i =1, 2, …, H

§  For all s 2 S

§  For all a 2 A:

§ 

31

§  V*i(s) : the expected sum of discounted rewards accumulated when
starting from state s and acting optimally for a horizon of i time steps.

§  Q*i(s): the expected sum of discounted rewards accumulated when
starting from state s with i time steps left, and when first taking action
and acting optimally from then onwards

§  How to act optimally? Follow optimal policy ¼*i(s) when i steps remain:

16

§  Initialization:
§  For i =1, 2, …, H

§  For all s 2 S

§ 

Value Iteration Rewritten

32

§  Initialization:
§  For i =1, 2, …, H

§  For all s 2 S

§  For all a 2 A:

§ 

Having done so, makes it very explicit that we can think of Value Iteration as
computing the sequence V0, V1, V2, …

This is just substituting the expression for Q*i.

Maps more directly to how you
would code value iteration

Rewritten version is convenient
for our ensuing discussion of
convergence properties

Convergence

§  Question we are about to answer is whether this
procedure converges, i.e.,

 what happens for H -> 1 ?

33

§  Initialization:
§  For i =1, 2, …, H

§  For all s 2 S

§ 

Value Iteration

17

Convergence

34

… H+1
time
steps

… H+1
time
steps

Set Rewards for
transition H->H+1 to

ZERO

Doing so effectively makes this
into a problem with horizon H,
hence we find V*H at the top

R=0

Convergence

§  Both are the optimal expected sum of rewards when acting for H+1 time steps in the same MDP,
except that for V*H the rewards are set to zero for the transition H->H+1

§  In the best possible scenario for V*H+1, one is able to achieve V*H in the first H time steps, and
then °H+1 maxs,a,s’ R(s,a,s’) in the last time step

 [you can’t do better than that, make sure you understand why]
§  In the worst possible scenario for V*H+1, one is able to achieve V*H in the first H time steps, and

then °H+1 mins,a,s’ R(s,a,s’) in the last time step
 [you can’t do worse than that, make sure you understand why

Hence we have:

Hence the difference decays exponentially, and hence the series V*1, V*2, V*3, … converges to a limit,
which we call V*.

35

How different can V*H and V*H+1 be?

18

§  Now we know how to act for infinite horizon with discounted rewards!
§  Run value iteration till convergence.
§  This produces V*, which in turn tells us how to act, namely following:

§  Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at
a state s is the same action at all times. (Efficient to store!)

Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found
the optimal value function V* for the discounted infinite horizon
problem, which satisfies the Bellman equations

36

Example: Bellman Updates

37

max happens for
a=right, other
actions not shown

Example: γ=0.9, living
reward=0, noise=0.2

19

Convergence (from Contraction
Perspective)*

§  Define the max-norm:

§  Theorem: For any two approximations U and V

§  I.e. any distinct approximations must get closer to each other,
so, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal
solution

§  Theorem:

§  I.e. once the change in our approximation is small, it must also
be close to correct

41

Reminder: Computing Actions

§  Which action should we chose from state s:
§  Given optimal values V*?

§  Given optimal q-values Q*?

§  Lesson: actions are easier to select from Q’s!

42

20

Our Status

§  Markov Decision Processes (MDPs)
§  Formalism
§  Value iteration

§  In essence a graph search version of expectimax,
but
§  there are rewards in every step (rather than a utility just in

the terminal node)
§  ran bottom-up (rather than recursively)
§  can handle infinite duration games

§  Policy Evaluation and Policy Iteration

43

Policy Evaluation

§  Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy

§  Define the utility of a state s, under a
fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

§  Recursive relation (one-step look-
ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s
’

44

21

Policy Evaluation
§  How do we calculate the V’s for a fixed policy?

§  Idea one: modify Bellman updates

§  Idea two: it’s just a linear system, solve with
Matlab (or whatever)

45

Policy Iteration

§  Alternative approach:
§  Step 1: Policy evaluation: calculate utilities for some

fixed policy (not optimal utilities!) until convergence
§  Step 2: Policy improvement: update policy using one-

step look-ahead with resulting converged (but not
optimal!) utilities as future values

§  Repeat steps until policy converges

§  This is policy iteration
§  It’s still optimal!
§  Can converge faster under some conditions

46

22

Policy Iteration
§  Policy evaluation: with fixed current policy π, find values

with simplified Bellman updates:
§  Iterate until values converge

§  Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

47

Policy Iteration Guarantees

Theorem. Policy iteration is guaranteed to converge and at convergence, the current
policy and its value function are the optimal policy and the optimal value function!

48

Policy Iteration iterates over:

Proof sketch:
(1)  Guarantee to converge: we will not prove this, but the proof proceeds by first showing that in every step

the policy improves. This means that a given policy can be encountered at most once. This means that
after we have iterated as many times as there are different policies, i.e., (number actions)(number states), we
must be done and hence have converged.

(2)  Optimal at convergence: by definition of convergence, at convergence ¼k+1(s) = ¼k(s) for all states s. This
means

 Hence satisfies the Bellman equation, which means is equal to the optimal value function V*.

23

Comparison
§  In value iteration:

§  Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

§  In policy iteration:
§  Several passes to update utilities with frozen policy
§  Occasional passes to update policies

§  Hybrid approaches (asynchronous policy iteration):
§  Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

50

Asynchronous Value Iteration*
§  In value iteration, we update every state in each iteration

§  Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

§  In fact, we can update the policy as seldom or often as

we like, and we will still converge

§  Idea: Update states whose value we expect to change:

 If is large then update predecessors of s

24

MDPs recap
§  Markov decision processes:

§  States S
§  Actions A
§  Transitions P(s’|s,a) (or T(s,a,s’))
§  Rewards R(s,a,s’) (and discount γ)
§  Start state s0

§  Solution methods:
§  Value iteration (VI)
§  Policy iteration (PI)
§  Asynchronous value iteration*

§  Current limitations:
§  Relatively small state spaces
§  Assumes T and R are known

52

