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Some slides adapted from Dan Klein

Outline

= Markov Decision Processes (MDPs)
» Formalism

= \/alue iteration

= In essence a graph search version of expectimax,
but

= there are rewards in every step (rather than a utility just in
the terminal node)

= ran bottom-up (rather than recursively)
= can handle infinite duration games

» Policy Evaluation and Policy Iteration




Non-Deterministic Search

How do you plan when your actions might fail?

Grid World

The agent lives in a grid

Walls block the agent’ s path

The agent’ s actions do not always
go as planned:

= 80% of the time, the action North
takes the agent North
(if there is no wall there)
= 10% of the time, North takes the
agent West; 10% East
= |f there is a wall in the direction the
agent would have been taken, the
agent stays put
Small “living” reward each step (can
be negative)

Big rewards come at the end
Goal: maximize sum of rewards
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Grid Futures

Deterministic Grid World

Stochastic Grid World
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Markov Decision Processes
= An MDP is defined by:
= AsetofstatessE S
= AsetofactionsacA
= A transition function T(s,a,s’) T
= Prob that a from s leads to s’
= i.e., P(s’ | s,a)
= Also called the model START
* Areward function R(s, a, s’)
= Sometimes just R(s) or R(s”)
1 3 4

A start state (or distribution)
= Maybe a terminal state

= MDPs are a family of non-
deterministic search problems

= One way to solve them is with
expectimax search — but we’ Il
have a new tool soon
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What is Markov about MDPs?

* Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

» For Markov decision processes,
“Markov” means:

P(St+1 = SIISt = St,At =a¢, Si—1 = 5t—1aAt—17 .5 = 50)

P(St+1 = S/’St = St,At = at)

Solving MDPs

» |n deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal
* In an MDP, we want an optimal policy n*: S — A
= A policy xt gives an action for each state

= An optimal policy maximizes expected utility if followed
= Defines a reflex agent
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Example Optimal Policies
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Example: High-Low

Three card types: 2, 3, 4
Infinite deck, twice as many 2’ s
Start with 3 showing

After each card, you say “high”
or “low”

New card is flipped

If you’ re right, you win the
points shown on the new card

Ties are no-ops
If you’ re wrong, game ends

Differences from expectimax:
= #1: get rewards as you go ---

could modify to pass the sum up You can patch expectimax
= #2: you might play forever! --- to deal with #1 exactly, but
would need to prune those, we’'ll not #2...

see a better way




High-Low as an MDP

= States: 2, 3, 4, done
= Actions: High, Low
* Model: T(s, a, s’):
» P(s’=4| 4, Low) = 1/4
= P(s’=3|4, Low) = 1/4
(s’=2|4, Low) = 1/2
(s’ =done | 4, Low) =0
(s’ =4 | 4, High) = 1/4
(s’ =3| 4, High) = 0
(s’=2| 4, High) =0
(s’ =done | 4, High) = 3/4

» Rewards: R(s, a, s’ ):
= Numbershownons’ ifs=s’
= ( otherwise

= Start: 3
Example: High-Low
3
Low High
3 . Low 3 . High
T=05  T=5025 =0 ~T=0.25
R=2 R=3 R=4 R=0

High Low High Low  High Low




MDP Search Trees

= Each MDP state gives an expectimax-like search tree

—Jp S is a state

(s,a,s") called a transition
T(s,a,s’ ) = P(s’ |s,a)
R(s,a,s")

Utilities of Sequences

= What utility does a sequence of rewards have?

»= Formally, we generally assume stationary preferences:
[T7 o, 71,72, - - ] - [Ta ré)a r/]_7 T/Qa . ]
&
[TO7 1,72, ] b [7"(/:)1 T{La TIQ? .- ]

= Theorem: only two ways to define stationary utilities
= Additive utility:
U(lro,r1,72,...) =m0 +r1+m2+---

= Discounted utility:
U([ro,r1,72,...]) =10 +yr1 +v°r2-




Infinite Utilities?!

* Problem: infinite state sequences have infinite rewards

= | |0

= Solutions:
= Finite horizon:
= Terminate episodes after a fixed T steps (e.qg. life)
= Gives nonstationary policies (n depends on time left)
= Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “done” for High-Low)

= Discounting: for0 <y < 1

A A=
A

L K dBE &

U(lrg,-.-m00]) = Y. ¥'r¢ < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

Discounting

= Typically discount rewards by
y < 1 each time step

= Sooner rewards have higher 1
utility than later rewards

= Also helps the algorithms
converge

= Example: discount of 0.5
= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])




Recap: Defining MDPs

= Markov decision processes:
= States S .
= Start state s, -
= Actions A
» Transitions P(s’ |s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount v)

= MDP quantities so far:
» Policy = Choice of action for each state
= Ultility (or return) = sum of discounted rewards

Our Status

= Markov Decision Processes (MDPs)
v/FormaIism

= \/alue iteration

= In essence a graph search version of expectimax,
but

= there are rewards in every step (rather than a utility just in
the terminal node)

= ran bottom-up (rather than recursively)
= can handle infinite duration games

» Policy Evaluation and Policy Iteration




Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}
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Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A= {1, 2}

i=number of time-steps left state A
state B

Q state (A,1)
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Q state (B,2)
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Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=number of time-steps left
i=3

i=3 .

i=2

A state A
A state B

Q state (A,1)
Q state (A,2)

O Q state (B,1)
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Q state (B,2)
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Expectimax for an MDP
Example MDP used for illustration has two states, S = {A, B}, and two actions, A= {1, 2}
i=number of time-steps left state A
i=3

state B
Q state (A,1)

Q state (A,2)

Q state (B,1)

OOOOP»

Q state (B,2)

Q
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S
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Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=number of time-steps left

A state A
A state B

Q state (A,1)
8 Q state (A,2)
O Q state (B,1)
O Q state (B,2)

Q
RT

S
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Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A= {1, 2}

i=number of time-steps left

state A
state B
Q state (A,1)

Q state (A,2)
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Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=number of time-steps left

A state A
A state B

Q state (A,1)
8 Q state (A,2)
O Q state (B,1)
O Q state (B,2)
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Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A= {1, 2}

i=number of time-steps left

state A
state B
Q state (A,1)

Q state (A,2)
Q state (B,1)

Q state (B,2)
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i=3

i=3

i=2

i=2

i=0

Expectimax for an MDP

Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2}

i=number of time-steps left A state A

A state B
Q state (A,1)
Q state (A,2)
O Q state (B,1)

Q state (B,2)

RT
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. Q state (A1)
Example MDP used for illustration has two states, S = {A, B}, and two actions, A= {1, 2} Q state (B,2)

i=number of time-steps lef

i=3

i=3

i=2

i=2

i=0

Value Iteration Performs this ﬁstateA O oserenn
Computation Bottom to Top & **°° Qstte @.1)

Vs e S, V5 (s) = max Q5(s,a)

Vs e S,Vae A

Q5 (s, a) Z T(s,a,s")[R(s,a,s") + V5'(s)]
s'eS

Vs € S, Vy(s) = max Q3(s,a)

Vs e S,Vae A

Q5(s,a) Z T(s,a,s")[R(s,a,s") + Vi*(s')]
s'eS

Vse S,Vae A
Qi (s,a) ZTsas (s,a,8") + Vy(s)]

s'eS
Initialization: Vi (A)=0 V5 (B)=0

29




Value Iteration for Finite Horizon
H and no Discounting

= |nitialization: Vse S:Vy(s)=0
= Fori=1,2,....,H
= Forallse S
= Forallae A: Qi (s,a)=>,T(s,a,s)[R(s,a,s")+ Vi, (s)]

= V*(s) = maxqea QF (s, a) i (s) = argmaxgea Q; (s, a)

= V'i(s) : the expected sum of rewards accumulated when starting from
state s and acting optimally for a horizon of i time steps.

= Q’(s): the expected sum of rewards accumulated when starting from
state s with i time steps left, and when first taking action and acting
optimally from then onwards

= How to act optimally? Follow optimal policy 7*i(s) when i steps remain:
7 (s) = max Q7 (s,a) = max Z T(s,a,s")[R(s,a,s’) + V()]

30

Value lteration for Finite Horizon
H and with Discounting

= |nitialization: Vse S:Vy(s)=0
= Fori=1,2,...,H
» Forallse S
= Forallac A: Qi (s,a) =), T(s,a,s)[R(s,a,s") + V()]

*

w V*(s) = maxgea QF (s, a) i (s) = argmaxgea Q7 (s, a)

= V'i(s) : the expected sum of discounted rewards accumulated when
starting from state s and acting optimally for a horizon of i time steps.

= Q’i(s): the expected sum of discounted rewards accumulated when
starting from state s with i time steps left, and when first taking action
and acting optimally from then onwards

= How to act optimally? Follow optimal policy 7*i(s) when i steps remain:
7i (s) = argmax Q; (s,a) = argmax Y T(s, a,5")[R(s,a,s") + 7V, 1(s)]

31
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Value lteration Rewritten

= |nitialization: Vse€ S:Vy(s)=0 Maps more directly to how you
. would code value iteration
= Fori=1,2,....,H

= ForallseS
* Foralla e A: Qi(s,a) =Y, T(s,a,s)[R(s,a,s) +~vV;(s)]

« V*(s) = max,ea Q (s, a)

‘ This is just substituting the expression for Q*;.

= |njtialization: Vse S: Vo*(é) =0 Rewritten version is convenient
. for our ensuing discussion of
= Fori=1, 2, ..., H convergence properties

= Forallse S
» Vi*(s) = maxeea .. T(s,a,8)[R(s,a,s") + vV, (s))]

Having done so, makes it very explicit that we can think of Value Iteration as
computing the sequence V, V,, V,, ...

32

Convergence

Value Iteration

= Initialization: Vse S:Vj(s)=0
= Fori=1,2,...,H
= Forallse S
" ‘/i*(s) = MaXgeA Zs’ T(Sv a, 5/)[R(‘57 a, 8/) + ’Y‘/itl(s,)]

= Question we are about to answer is whether this
procedure converges, i.e.,

what happens for H -> o ?

33
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Convergence

H+1
time
steps

Vii1(A) Vi (B)

Vip(4)  Vi(B)

H+1
L e time 1
steps

Set Rewards for
transition H->H+1 to
ZERO

Doing so effectively makes this
into a problem with horizon H,
hence we find V*, at the top

Vi(4)  Vi(B)

34

Convergence

H+
time
steps

Vi(A) Vii(8) Vi) Vi

e { How different can V*,, and V*,,,, be?

«—R=0

Both are the optimal expected sum of rewards when acting for H+1 time steps in the same MDP,
except that for V*,, the rewards are set to zero for the transition H->H+1

In the best possible scenario for V'u+1, one is able to achieve V'n in the first H time steps, and
then 7/*" max, , ¢ R(s,a,s’) in the last time step

[you can’t do better than that, make sure you understand why]

In the worst possible scenario for V'1+1, one is able to achieve V'y in the first H time steps, and
then 4/*1 min , ¢ R(s,a,s’) in the last time step

[you can’t do worse than that, make sure you understand why

Hence we have:  |V7i(s) — Vi1 (s)| < H 1 max |R(s, a,s’)|
8,a,8

Hence the difference decays exponentially, and hence the series V*;, V*,, V*;, ... converges to a limit,

whi

ch we call V*.

35
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Value lteration Convergence

Theorem. Value iteration converges. At convergence, we have found
the optimal value function V* for the discounted infinite horizon
problem, which satisfies the Bellman equations

Vse S: Vi(s) = maaxZT(s,a, s") {R(s, a,s') + ’VV*(S,)}
s/

= Now we know how to act for infinite horizon with discounted rewards!

= Run value iteration till convergence.
= This produces V*, which in turn tells us how to act, namely following:

*(s) = argmaxgea Y. 1'(s,a,s)[R(s,a,s) +yV*(s)]

= Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at
a state s is the same action at all times. (Efficient to store!)

36

Example: y=0.9, living
reward=0, noise=0.2

Example: Bellman Updates

3 | O 0 3 0 0 |o.72| G

Vi2| 0 O || 2| o 0 || V2

1 0 0 0 0 1 0 0 0 0

1 2 3 4 1 2 3 4

Vig1(s) = mngT(s,a, ") {R(s,a, s + *yVi(s/)}

V2((3,3)) = 3" T((3,3),right, s') [R((3,3)) 4+ 0.9 V4 (s")]

/ s!
max happens for

agtotter  =0.9[0.8-140.1-0+40.1-0]
37




Convergence (from Contraction
Perspective)”

= Define the max-norm: ||U|| = maxs |U(s)|

= Theorem: For any two approximations U and V
Uit1 = Vigall <~ |U; = Vil

= |.e. any distinct approximations must get closer to each other,
S0, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal

solution
= Theorem:
|Uiv1 —Uill < e, = [[Uig1 = Ul| < 2ev/(1 —7)

= |.e. once the change in our approximation is small, it must also
be close to correct

41

Reminder: Computing Actions

= Which action should we chose from state s:
= Given optimal values V*?

argmax > T(s,a,s)[R(s,a,s) +vV*(s)]

» Given optimal g-values Q*?

argmax Q*(s,a)
a

» Lesson: actions are easier to select from Q’ s!

42
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Our Status

Markov Decision Processes (MDPs)
v/FormaIism
/Value iteration

= In essence a graph search version of expectimax,
but

= there are rewards in every step (rather than a utility just in
the terminal node)

» ran bottom-up (rather than recursively)
» can handle infinite duration games

» Policy Evaluation and Policy Iteration

43

Policy Evaluation

Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy

Define the utility of a state s, under a
fixed policy m:
V7(s) = expected total discounted ,
rewards (return) starting in s and
following =

Recursive relation (one-step look-
ahead / Bellman equation):

VT(s) = ZT(s,w(s), SH[R(s,7(s),s") +~V™(s)]

44

20



Policy Evaluation

= How do we calculate the V’ s for a fixed policy?

» |dea one: modify Bellman updates

Vo (s) =0

Vi1(s) < > T(s,m(s),s)[R(s,m(s),s") + V" (s)]

= |dea two: it’ s just a linear system, solve with
Matlab (or whatever)

45

Policy lteration

= Alternative approach:

= Step 1: Policy evaluation: calculate utilities for some
fixed policy (not optimal utilities!) until convergence

= Step 2: Policy improvement: update policy using one-
step look-ahead with resulting converged (but not
optimal!) utilities as future values

» Repeat steps until policy converges

= This is policy iteration
= |t’ s still optimal!
= Can converge faster under some conditions

46
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Policy lteration

= Policy evaluation: with fixed current policy =, find values
with simplified Bellman updates:

= |terate until values converge

ViE(s) = DT (s, (), &) [R(s, mi(s),8') + 7 V™ (sH)]

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Tt (s) = argmaxy_ T(s, a,s") [R(s, a,5") +7V(s")

47
Policy lIteration iterates over: ‘
= Policy evaluation: with fixed current policy =, find values
with simplified Bellman updates:
= lterate until values converge
Vi (8) = 2T (s, mp(s), ) [R(s,mi(s),8') + 7 x;ﬂ(s’)\
= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead
mr41(s) = argmax ) T(s, a,s') [R(s,a,8") + V()]
Theorem. Policy iteration is guaranteed to converge and at convergence, the current
policy and its value function are the optimal policy and the optimal value function!
Proof sketch:
(1) Guarantee to converge: we will not prove this, but the proof proceeds by first showing that in every step
the policy improves. This means that a given policy can be encountered at most once. This means that
after we have iterated as many times as there are different policies, i.e., (number actions)(number states) e
must be done and hence have converged.
(2) Optimal at convergence: by definition of convergence, at convergence m,,4(s) = m,(s) for all states s. This
means Vs V(s) = maxa Xy T(s, a,') [R(s,a,') + 7 V*(s)]
Hence v satisfies the Bellman equation, which means v~ is equal to the optimal value function V*. 48
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Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

= |n policy iteration:
= Several passes to update utilities with frozen policy
= QOccasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

= Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

50

Asynchronous Value lteration®

» |n value iteration, we update every state in each iteration

= Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

= In fact, we can update the policy as seldom or often as
we like, and we will still converge

» |dea: Update states whose value we expect to change:
If |V..(s)=V.(s)| is large then update predecessors of s

23



MDPs recap

= Markov decision processes:
= States S
= Actions A
= Transitions P(s’ |s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y)
= Start state s,
= Solution methods:
= Value iteration (VI)
= Policy iteration (PI)
= Asynchronous value iteration*
= Current limitations:
= Relatively small state spaces
= Assumes T and R are known

52
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