
1 

CS 188: Artificial Intelligence 
 

Markov Decision Processes (MDPs) 

Pieter Abbeel – UC Berkeley 

Some slides adapted from Dan Klein 
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Outline 

§  Markov Decision Processes (MDPs) 
§  Formalism 
§  Value iteration 

§  In essence a graph search version of expectimax, 
but  
§  there are rewards in every step (rather than a utility just in 

the terminal node) 
§  ran bottom-up (rather than recursively) 
§  can handle infinite duration games 

§  Policy Evaluation and Policy Iteration 
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Non-Deterministic Search 
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How do you plan when your actions might fail? 

Grid World 
§  The agent lives in a grid 
§  Walls block the agent’s path 
§  The agent’s actions do not always 

go as planned: 
§  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

§  10% of the time, North takes the 
agent West; 10% East 

§  If there is a wall in the direction the 
agent would have been taken, the 
agent stays put 

§  Small “living” reward each step (can 
be negative) 

§  Big rewards come at the end 
§  Goal: maximize sum of rewards 
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Grid Futures 
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Markov Decision Processes 
§  An MDP is defined by: 

§  A set of states s ∈ S 
§  A set of actions a ∈ A 
§  A transition function T(s,a,s’) 

§  Prob that a from s leads to s’ 
§  i.e., P(s’ | s,a) 
§  Also called the model 

§  A reward function R(s, a, s’)  
§  Sometimes just R(s) or R(s’) 

§  A start state (or distribution) 
§  Maybe a terminal state 

§  MDPs are a family of non-
deterministic search problems 
§  One way to solve them is with 

expectimax search – but we’ll 
have a new tool soon 
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What is Markov about MDPs? 
§  Andrey Markov (1856-1922) 

§  “Markov” generally means that given 
the present state, the future and the 
past are independent 

§  For Markov decision processes, 
“Markov” means: 

 

Solving MDPs 
§  In deterministic single-agent search problems, want an 

optimal plan, or sequence of actions, from start to a goal 
§  In an MDP, we want an optimal policy π*: S → A 

§  A policy π gives an action for each state 
§  An optimal policy maximizes expected utility if followed 
§  Defines a reflex agent 

Optimal policy when R
(s, a, s’) = -0.03 for all 
non-terminals s 
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Example Optimal Policies 

R(s) = -2.0 R(s) = -0.4 

R(s) = -0.03 R(s) = -0.01 
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Example: High-Low 
§  Three card types: 2, 3, 4 
§  Infinite deck, twice as many 2’s 
§  Start with 3 showing 
§  After each card, you say “high” 

or “low” 
§  New card is flipped 
§  If you’re right, you win the 

points shown on the new card 
§  Ties are no-ops 
§  If you’re wrong, game ends 

§  Differences from expectimax:  
§  #1: get rewards as you go  --- 

could modify to pass the sum up 
§  #2: you might play forever! --- 

would need to prune those, we’ll 
see a better way 
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You can patch expectimax 
to deal with #1 exactly, but 
not #2… 
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High-Low as an MDP 
§  States: 2, 3, 4, done 
§  Actions: High, Low 
§  Model: T(s, a, s’): 

§  P(s’=4 | 4, Low) = 1/4  
§  P(s’=3 | 4, Low) = 1/4 
§  P(s’=2 | 4, Low) = 1/2 
§  P(s’=done | 4, Low) = 0 
§  P(s’=4 | 4, High) = 1/4  
§  P(s’=3 | 4, High) = 0 
§  P(s’=2 | 4, High) = 0 
§  P(s’=done | 4, High) = 3/4 
§  … 

§  Rewards: R(s, a, s’): 
§  Number shown on s’ if s ≠ s’ 
§  0 otherwise 

§  Start: 3 
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Example: High-Low 
3 

Low High 

2 4 3 
High Low   High Low High Low 

3 , Low , High 3 

T = 0.5, 
R = 2 

T = 0.25, 
R = 3 

T = 0, 
R = 4 

T = 0.25, 
R = 0 
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MDP Search Trees 
§  Each MDP state gives an expectimax-like search tree 

a 

s 

s’ 

s, a 

(s,a,s’) called a transition 

T(s,a,s’) = P(s’|s,a) 

R(s,a,s’) 
s,a,s’ 

s is a state 

(s, a) is a 
q-state 
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Utilities of Sequences 
§  What utility does a sequence of rewards have? 

§  Formally, we generally assume stationary preferences: 

§  Theorem: only two ways to define stationary utilities 
§  Additive utility: 

§  Discounted utility: 
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Infinite Utilities?! 
§  Problem: infinite state sequences have infinite rewards 

§  Solutions: 
§  Finite horizon: 

§  Terminate episodes after a fixed T steps (e.g. life) 
§  Gives nonstationary policies (π depends on time left) 

§  Absorbing state: guarantee that for every policy, a terminal state 
will eventually be reached (like “done” for High-Low) 

§  Discounting: for 0 < γ < 1 

§  Smaller γ means smaller “horizon” – shorter term focus 
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Discounting 
§  Typically discount rewards by 
γ < 1 each time step 
§  Sooner rewards have higher 

utility than later rewards 
§  Also helps the algorithms 

converge 

§  Example: discount of 0.5 
§  U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 
§  U([1,2,3]) < U([3,2,1]) 
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Recap: Defining MDPs 
§  Markov decision processes: 

§  States S 
§  Start state s0 
§  Actions A 
§  Transitions P(s’|s,a) (or T(s,a,s’)) 
§  Rewards R(s,a,s’) (and discount γ) 

§  MDP quantities so far: 
§  Policy = Choice of action for each state 
§  Utility (or return) = sum of discounted rewards 

a

s

s, a 

s,a,s’ 
s
’ 

17 

Our Status 

§  Markov Decision Processes (MDPs) 
§  Formalism 
§  Value iteration 

§  In essence a graph search version of expectimax, 
but  
§  there are rewards in every step (rather than a utility just in 

the terminal node) 
§  ran bottom-up (rather than recursively) 
§  can handle infinite duration games 

§  Policy Evaluation and Policy Iteration 
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Expectimax for an MDP 
Example MDP used for illustration has two states, S = {A, B}, and two actions, A = {1, 2} 
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Expectimax for an MDP 
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Expectimax for an MDP 
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Expectimax for an MDP 
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Expectimax for an MDP 
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Expectimax for an MDP 
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Value Iteration Performs this 
Computation Bottom to Top 
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state A 
state B 
Q state (A,1) 
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Value Iteration for Finite Horizon 
H and no Discounting 

§  Initialization: 
§  For i =1, 2, …, H 

§  For all s 2 S 

§  For all a 2 A: 

§       

30 

§  V*i(s) : the expected sum of rewards accumulated when starting from 
state s and acting optimally for a horizon of i time steps. 

§  Q*i(s): the expected sum of rewards accumulated when starting from 
state s with i time steps left, and when first taking action and acting 
optimally from then onwards 

§  How to act optimally?   Follow optimal policy ¼*i(s) when i steps remain: 

Value Iteration for Finite Horizon 
H and with Discounting 

§  Initialization: 
§  For i =1, 2, …, H 

§  For all s 2 S 

§  For all a 2 A: 

§       
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§  V*i(s) : the expected sum of discounted rewards accumulated when 
starting from state s and acting optimally for a horizon of i time steps. 

§  Q*i(s): the expected sum of discounted rewards accumulated when 
starting from state s with i time steps left, and when first taking action 
and acting optimally from then onwards 

§  How to act optimally?   Follow optimal policy ¼*i(s) when i steps remain: 
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§  Initialization: 
§  For i =1, 2, …, H 

§  For all s 2 S 

§       

Value Iteration Rewritten 
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§  Initialization: 
§  For i =1, 2, …, H 

§  For all s 2 S 

§  For all a 2 A: 

§       

Having done so, makes it very explicit that we can think of Value Iteration as 
computing the sequence V0, V1, V2, … 

This is just substituting the expression for Q*i.  

Maps more directly to how you 
would code value iteration 

Rewritten version is convenient 
for our ensuing discussion of 
convergence properties 

Convergence 

§  Question we are about to answer is whether this 
procedure converges, i.e.,  

 what happens for H -> 1 ? 
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§  Initialization: 
§  For i =1, 2, …, H 

§  For all s 2 S 

§       

Value Iteration 
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Convergence 

34 

… H+1 
time  
steps 

… H+1 
time  
steps 

Set Rewards for 
transition H->H+1 to 

ZERO 

Doing so effectively makes this 
into a problem with horizon H, 
hence we find V*H at the top 

R=0 

Convergence 

§  Both are the optimal expected sum of rewards when acting for H+1 time steps in the same MDP, 
except that for V*H the rewards are set to zero for the transition H->H+1 

§  In the best possible scenario for V*H+1, one is able to achieve V*H in the first H time steps, and 
then °H+1 maxs,a,s’ R(s,a,s’) in the last time step  

      [you can’t do better than that, make sure you understand why] 
§  In the worst possible scenario for V*H+1, one is able to achieve V*H in the first H time steps, and 

then °H+1 mins,a,s’ R(s,a,s’) in the last time step 
      [you can’t do worse than that, make sure you understand why 
 

Hence we have:  
 
Hence the difference decays exponentially, and hence the series V*1, V*2, V*3, … converges to a limit, 
which we call V*. 
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How different can V*H and V*H+1 be? 
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§  Now we know how to act for infinite horizon with discounted rewards! 
§  Run value iteration till convergence. 
§  This produces V*, which in turn tells us how to act, namely following: 

§  Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at 
a state s is the same action at all times.  (Efficient to store!) 

Value Iteration Convergence 

Theorem.   Value iteration converges.  At convergence, we have found 
the optimal value function V* for the discounted infinite horizon 
problem, which satisfies the Bellman equations 
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Example: Bellman Updates 
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max happens for 
a=right, other 
actions not shown 

Example: γ=0.9, living 
reward=0, noise=0.2 
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Convergence (from Contraction 
Perspective)* 

§  Define the max-norm: 

§  Theorem: For any two approximations U and V 

§  I.e. any distinct approximations must get closer to each other, 
so, in particular, any approximation must get closer to the true U 
and value iteration converges to a unique, stable, optimal 
solution 

§  Theorem: 

§  I.e. once the change in our approximation is small, it must also 
be close to correct 
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Reminder: Computing Actions 

§  Which action should we chose from state s: 
§  Given optimal values V*? 

§  Given optimal q-values Q*? 

§  Lesson: actions are easier to select from Q’s! 

42 
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Our Status 

§  Markov Decision Processes (MDPs) 
§  Formalism 
§  Value iteration 

§  In essence a graph search version of expectimax, 
but  
§  there are rewards in every step (rather than a utility just in 

the terminal node) 
§  ran bottom-up (rather than recursively) 
§  can handle infinite duration games 

§  Policy Evaluation and Policy Iteration 
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Policy Evaluation 

§  Another basic operation: compute 
the utility of a state s under a fix 
(general non-optimal) policy 

§  Define the utility of a state s, under a 
fixed policy π: 
Vπ(s) = expected total discounted 

rewards (return) starting in s and 
following π 

§  Recursive relation (one-step look-
ahead / Bellman equation): 

π(s) 

s

s, π(s) 

s, π(s),s’ 

s
’ 
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Policy Evaluation 
§  How do we calculate the V’s for a fixed policy? 

§  Idea one: modify Bellman updates 

§  Idea two: it’s just a linear system, solve with 
Matlab (or whatever) 
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Policy Iteration 

§  Alternative approach: 
§  Step 1: Policy evaluation: calculate utilities for some 

fixed policy (not optimal utilities!) until convergence 
§  Step 2: Policy improvement: update policy using one-

step look-ahead with resulting converged (but not 
optimal!) utilities as future values 

§  Repeat steps until policy converges 

§  This is policy iteration 
§  It’s still optimal! 
§  Can converge faster under some conditions 
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Policy Iteration 
§  Policy evaluation: with fixed current policy π, find values 

with simplified Bellman updates: 
§  Iterate until values converge 

§  Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead 
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Policy Iteration Guarantees 

Theorem.  Policy iteration is guaranteed to converge and at convergence, the current 
policy and its value function are the optimal policy and the optimal value function! 
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Policy Iteration iterates over: 

Proof sketch:   
(1)  Guarantee to converge: we will not prove this, but the proof proceeds by first showing that in every step 

the policy improves.  This means that a given policy can be encountered at most once.  This means that 
after we have iterated as many times as there are different policies, i.e., (number actions)(number states), we 
must be done and hence have converged. 

(2)  Optimal at convergence: by definition of convergence, at convergence ¼k+1(s) = ¼k(s) for all states s.  This 
means       

       Hence          satisfies the Bellman equation, which means        is equal to the optimal value function V*. 
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Comparison 
§  In value iteration: 

§  Every pass (or “backup”) updates both utilities (explicitly, based 
on current utilities) and policy (possibly implicitly, based on 
current policy) 

§  In policy iteration: 
§  Several passes to update utilities with frozen policy 
§  Occasional passes to update policies 

§  Hybrid approaches (asynchronous policy iteration): 
§  Any sequences of partial updates to either policy entries or 

utilities will converge if every state is visited infinitely often 
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Asynchronous Value Iteration* 
§  In value iteration, we update every state in each iteration 

§  Actually, any sequences of Bellman updates will 
converge if every state is visited infinitely often 

 
§  In fact, we can update the policy as seldom or often as 

we like, and we will still converge 
 
§  Idea: Update states whose value we expect to change: 

 If                         is large then update predecessors of s 



24 

MDPs recap 
§  Markov decision processes: 

§  States S 
§  Actions A 
§  Transitions P(s’|s,a) (or T(s,a,s’)) 
§  Rewards R(s,a,s’) (and discount γ) 
§  Start state s0 

§  Solution methods: 
§  Value iteration (VI) 
§  Policy iteration (PI) 
§  Asynchronous value iteration* 

§  Current limitations: 
§  Relatively small state spaces 
§  Assumes T and R are known 
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