

Non-Deterministic Search

How do you plan when your actions might fail?

3

Value Iteration for Finite Horizon H and no Discounting

Initialization: $\forall s \in S : V_0^*(s) = 0$

- For all $s \in S$
 - For all $\mathbf{a} \in \mathbf{A}$: $Q_i^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + V_{i-1}^*(s')]$
 - $V_i^*(s) = \max_{a \in A} Q_i^*(s, a)$ $\pi_i^*(s) = \arg \max_{a \in A} Q_i^*(s, a)$
- V^{*}_i(s) : the expected sum of rewards accumulated when starting from state s and acting optimally for a horizon of i time steps.
- Q^{*}_i(s): the expected sum of rewards accumulated when starting from state s with i time steps left, and when first taking action and acting optimally from then onwards
- How to act optimally? Follow optimal policy $\pi^*_i(s)$ when i steps remain:

$$\pi_i^*(s) = \max_a Q_i^*(s, a) = \max_a \sum T(s, a, s') [R(s, a, s') + V_{i-1}^*(s')]$$

30

31

Value Iteration for Finite Horizon H and with Discounting

• Initialization: $\forall s \in S : V_0^*(s) = 0$

- For i =1, 2, ..., H
 - For all $s \in S$
 - For all $\mathbf{a} \in \mathbf{A}$: $Q_i^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{i-1}^*(s')]$
 - $V_i^*(s) = \max_{a \in A} Q_i^*(s, a)$ $\pi_i^*(s) = \arg \max_{a \in A} Q_i^*(s, a)$
- V^{*}_i(s) : the expected sum of *discounted* rewards accumulated when starting from state s and acting optimally for a horizon of i time steps.
- Q^{*}_i(s): the expected sum of *discounted* rewards accumulated when starting from state s with i time steps left, and when first taking action and acting optimally from then onwards
- How to act optimally? Follow optimal policy $\pi^*_i(s)$ when i steps remain:

$$\pi_i^*(s) = \arg\max_a Q_i^*(s, a) = \arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{i-1}^*(s')]$$

MDPs recap

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s' |s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀
- Solution methods:
 - Value iteration (VI)
 - Policy iteration (PI)
 - Asynchronous value iteration*

Current limitations:

- Relatively small state spaces
- Assumes T and R are known

52